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APPLICATION OF THE RATE DIAGRAM TECHNIQUE TO THE
ANALYSIS AND DESIGN OF SPACE VEHICLE ON-OFF
ATTITUDE CONTROL SYSTEMS

¥*
H. Patapoff

ABSTRACT

Preliminary single axis analysis and design of a space vehicle control system,
consisting of a torque producing device and a dead-bard within which there
are no externally or internally applied torques, can be accomplished quite
effectively by a simple pgraphical technique termed the "Rate Diagram' method.
Two characteristics of typical space vehicle attitude control problems which
make this method effective are the undamped rigid body motion of the vehicle
and the associated low angular rates. 'These characteristics satisfy the two
basic assumptions required for the use of this technique; namely, that the
vehicle angular acceleration is proportional to the applied torque, and that
system transients effectively decay prior to control torque application. The
system, exclusive of the vehicle dynamics, can be of any order, thus allow-
ing sensor dynamics, chaping networks, control torque characteristics, etc.,

to be included.

A "Rate Diagram” is simply a plot of the vehicle angular rate at control
torque removal versus the rate at torque application. Information regarding

cystem stability, transient respons?, and limit cycle behavior can be ob-
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tained directly from such a diagram. 'This diagram can be constructed with
relative ease through the use of the analytical relationships developed and
presented in this paper. In addition, these relationships allow the analy-

tical determination of limit cycle amplitude and period.

This graphical method of analysis can be quite effective as a design tool
in designing systems to meet specified performance requirements. As system
parameters or control torque characteristics are varied, the resulting
changes in system behavior can be noted visually by the corresponding
changes in the Rate Diagram. The interpretation of a Rate Diagram for
analysis and design purposes is discussed, and a detailed treatment of an
example space vehicle control system problem to exemplify this technique is

included.

INTRODUCTION

On-off reaction control systems have found wide application in the field
of space vehicle attitude control. This control method is particularly
attractive because of its inherent simplicity and relatively high relia-
bility, being most effective and cconomical in cases where only relatively
small correcting torques are necessary to maintain attitude contirol -
especially in cases where the allowable attitude excursions are relatively

large.

The control torque generators may be either torque producing devices which
change the total vehicle anrular momentum in incrtial space, or momentum
storage devices which transfer awmlar momentum between the vehicle and
rotating inertias within the vehicle. The most commonly used torque pro-

ducing devices are of the mass cjection type. Compressed pases, liquid
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‘vaporization, or the more sophisticated ion-generation are examples. The

moet common momentum storage device is the well knowvm reaction vheel.,

One of the basic difficulties associated with such nonlinear control systems
is the lack of available analysis or synthesis techniques which are suitable
for the practicing control engineer. One approach is to treat the problem
as a conventional‘onekapplicable, say, to phase p'~+e analysis, ignoring
effects which makevfhe problem ccamplicated, such as actuator and sensor
dynamics. If thcre‘afg no serious problems assoclated with such an over-
simplified case;_it 1s £hen hoped that the results wvill serve as a sort

of first approximation to the "real" solution.

A techhique'is‘preééntedvin this paper’in vhich the performance of space
vehicle control systcmb can be analyzed without the need of over=-simplifying
the control problem.‘ Actuator and sencor dynamics end shaping filters

can be included in such an analysis. Thls technique ic, however, based

upon two major aonumptiono; namely, that all tronsients in the system
effectively ‘decay prior to control torque command, and that the vehicle
dynamics'can be represented as a double Integration of the control torque.
Thesé two assumptionec have, in the past, been valid in numerous space

vehicle control problems,

SYSTEM DESCRIPITON

A block diagrom of the on=-off control system considered appears in Figure 1.
T 15 the moment of iInertia of the vehicle, vhose angular acceleration is
proportional to the control toraque, Tc. T™Me vehlele attitude, 0, 15 sensed
and comparcd with the commonded attlitude, GC. The resulting error sipgnal

is Tiltered and fed to the switch. The swltch has a dead-space of + QD
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and a per-unit hysteresis h. The system operation can be explained with
the aid of the phase-plane trajectory of Figure 2. Asgcume that the vehicle
rotates at an angular rate, éo’ and that the output signal of the filter
lies within the dead space of the switch. As the vehicle rotates, the an-
gular error increases until the filter output becomes OD, at vhich time
switch closure occurs. This corresponds to point 1 of Figure 2. Ta seconds
after switch closure, control torque is applied which tends to reverse the
direction of travel, corresponding to point 2. The transportation delay
time, Tps is assumed to be constant. Control torque is applied to the
vehicle until the output of the filter reduces to the value OD(l-h), at
wvhich time the switch opens. This corresponds to point 3. Control torque
is not removed until R seconds after switch opening, corresponding to
point 4. The filter output is egain within the dead-space of the switch,

and the vehicle rotation has been reversed at a rate, é This sequence

et
is now repeated. If the vehicle rotation has not been reversed after

torque removal, then torque will again be applied until reversal of rotation
does occur. An example phase-plane trajectory for this occurance is shu.n

in Figure 3.

The filter is assumed to have a rational algebraic transfer function (with
poles in the left half s plane) with unity zero frequency gain. The actuator

and sensor dynam.cs are included in the filter transfer function.

The control torque build-up and tail-off characteristics are assumed to be
the same for either positive or negative vehicle accelerations. Figure L

shows typical torque characteristice for a constant torque generator. For
convenience the control torque tail-off characteristics are included in the

time delay, For the typical case of Figure 4 the tail-off character-

Rc
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istics are independent of the switch-off time ~nce full torque has been
achieved. If shut-off occurs prior to full torque build-up,or, in the
general case, if taill-off characteristics are a function of the control

torque "on-time", the necessary modification of T, vs. control torque

R
"on-time" can be determined experimentally.

THE RATE DIAGRAM

Definition
A rate diagram is simply a plot of the vehicle angular rate at control

torque removal, Of, versus the rate at control torque application, 60.

Construction
Analytical expressions for use in constructing such a diagram are derived

in the Appendix.

Since the control system characteristi.s, except for sign, are assumed
identical for both positive and negative vehicle rotations, it is suff-
icient to construct rate diagrams only for positive values of 60. It
is sufficient to know only the angular rate at torque removal, 6f, re-

lutive to éo'

Due to the fact that the control torque tends to reverse the direction of
travel, the vehicle final angular rate, éf, for an infinitesimally small
positive initial rate, 60, is negative. Also, if the final rate has the
same sign as the initial rate, its magnitude will be less than that of
the initial rate. This, in effect, means that the rate curve (for posi-

tive'éo) alvays lies below the line 60 -9, =0,

£
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Interpretation

1. Stability
The stability of the control system can be determined by the addition

of the line, éo + 6f = 0, (which will be termed the "minus-one" line)
to the rate diagram. If the rate curve lies everywhere above this line,
the rate amplitude continually decreases, indiceting a stable system.

If the rate curve lies everywhere below this line, then the rate
amplitude continually increases, indicating an unstable system.

Example diagrams appear in Figure 5.

In general, the "minus-one" line (60 + éf = 0) will intersect the
rate curve, indicating regions of stability and instability. All
points of intersection indicate the existence of symmetrical limit
cycles, since 6f = - 60. Whether these limit cycles are stable or
unstable depends upon the manner in which the rate curve inter-
sects the minus-one line. Unsymmetrical limit cycles (where the
magnitudes of the initial and final rates are unequal) can be found,
if they exist, by constructing lines perpendicular to the minus-one
line. If any of these lines intersects the rate curve at more than
one point, and if two points of intersection are equidistant from
the minus-one line, then an unsymmetrical limit cycle is indicated.
Reference to Figure 6b shows that points 1 and 2 correspond to an

unsymnetrical limit cycle. The existence and stability of such limit

cycle behavior will not be discussed in this paper.

2. Symmetrical Limit Cycles

Consider the example rate diagram of Figure 6a. The two points of
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intersection indicate the existence of symmetrical limit cycles.
Points 1 and 2 represent a stable and unstable limit cycle, res-
pectively. Considering point 1, a slight decrease in rate amplitude
results in a build-up of amplitude, and a slight increase results

in a decrease in amplitude. The system, then, undergoes stable
oscillations in the vicinity of point 1. For point 2, a siight
increase in rate amplitude results in a continual rate build-up,
indicating an unstable system for rates above that corresponding

to point 2. A slight decrease in rate amplitude results in a rate

decrease until point 1 is reached.

The amplitudes of the limit cycle rates can be read directly from
the rate diagram. If, however, the limit cycle rate amplitude is
of sole interest (assuming knowledge of existence and stability),
it can be determined analytically by use of equations (A-13), (A-15),

and (A-16) derived in the Appendix.

For example, assuming a step function for the control torque character-

istics, the limit cycle rate amplitude, OLC’ is determined using

equation (A-15):

-z -A_-TR =h9D+°LCTA+9LC-X:-TR (1)

wvhere
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Expressing F(s) in the form:

m m-1 2
As + A .8 + veeee + A BT + A8+ 1
- 2 1
F(s) = 22— Dl - (3)
n n-1 )
an + Bn-ls + ceeer + st + Bla +1
or.
_m
(1 + T, 8)
1=l 1
F(s) = (%)

and expanding fiﬁl into partial fractions (assuming that the order

53 F(s)
of the denominator of 3 is greater than that of the numerator):
5
% X,
8 8 8 1+
J=1 p.j
gives:
Nk t
F(s)| _ J 3
1 [ ]—2+Ct+C+Z ™ e P, (6)
5 3=

The partial fraction coefficients of equation (5) can be determined

from the following relationships:

C, = A - B (7)

Q
]

A, - B, - B (Al - Bl) (8)
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vhere:
m
N (9)
i=1
n
B = Z *s, (10)
J=1
m m
1
Az = E Z Z Tzi Tz (ll)
1=l j=1 J
1£]
n n
132:.%2 Z L (12)
i g+
1£)
If F(s) contains simple poles:
_ \ F(s
KJ = (1 + ijs, J—ls3 (13)
1
g = = =
T
®

noK
c; = ). TV (14)
=1 | P

K
= (25)
P
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Combining equations (1), (2), and (6):

t
AoTR? S AKX, L Ie
TH hey + A 7:C, '2—12‘—'>‘0C1'Z‘?9—L.° T, [ (6
e S
vhere: 20
1C
tLC=-x;—-1’R (17)

Assuming simple poles for F(s), and substituting equation (15) into
(16):

noo t
o = ———2——(ho, + A\ 7 +)\ Z-"-( T ) (18)
A R ° — Tp J
2|7z =1 7
If F(s) is simply a pure lead,
F(s) = 1+ 18 (19)
then Equation (18) reduces to the algebraic relation:
m_ho T
‘ o D o 'R ]
9., = = + T (7 + 1Amo) (20)
where
1
) - Tt TR
1

10
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If F(s) is a lead-lag filter,

F(s) = l—:li (22)

1+129

then Equation (18) becomes:

. m_ ho Aot m N\, To(T= 75)
OLC= 12D + gR (2+1Aml)+ 1 0221 2 (l-e-a) (23)
where ]
m1 = T, + T (Zh)
T_T_( A R)
1 2
26 \
1 LC '
o = = - T 2
Al w R} (25)

Since the term, @, in Fquation (23) is a function of ©; o> @ graphical

or iterative solution for élc is necessary.

The maximum excursion of the vehicle, 6, (sce Figure 7) is given by

the relation:

. 2 .
e (<]
_ LC LC
% = 9 A, . m (26)
where
1
m = C - TA (27)

11
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Here, -m is the slope of the control torque "on" line. Because of
the assumption that transients cffectively decay prior to switch-on,
these "on" lines, which intersect the © axis at + OD, can be con=
structed in the phase-plane. "The construction of "off" curves,

however, become quite tedious.

The period, TIC’ of the limit cycle is determined by noting (see
Figure 7) that the time interval between points 1 and 2 is simply

oo/oLc, vhere

e = 0. - '—ILC' (28)

=42 1
Toff ‘ é m (29)
1C

The time interval between points 2 and 3 is equal to tLC + TR, where
t;c ie the time at switch opening, and is glven by equation (17) for
the case of a step torque. For the more general case tLC and OLC are

related by:

t T

1ct ™R

e 7 [ Ao a (30)

This expression is obtained from Equation (A-16) Ly setting 6f = - éo.

For a step torque, the total control torque "on-time" yer cycle is:

12
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Ton = ‘xo—' (31)

) o
D 1.C 1
- < Wl 2 4 25 L =
TLC Ton * Toff ‘ 9 ! A m (32)
IC (o}

The total impulse expended by the control system per cycle is equal
to hIéLp. The impulse per unit time, vhich pives a measure of fuel

consumption, is then:

b16,
Impulse/unit time = 3 (33)

1c

If minimization of fuel consumption during limit cycling is the goal
for a specific control problem, this is accomplished analytically
by partial differentiation of Equation (33) with respect to the
parameter of interest, or graphically by simply plotting Equation
(33).

Construction of Phase-Plane Trajectories From the Rate Diagram

In order to have a better understanding of the interpretation of a
rate diagram, let us construct a typical phase-plane trajectory
from the example rate diagram of Figure 8. let us assume a step
control torque and an initial vehicle rotation at an angular rate
corresponding to point A of Figure 9. The response of the system

for this initial rate will now be followed. The vehicle rate at

13
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switch-off (point B) has a valuc that is opposite in sign to that
corresponding to point A. This means that the vehicle motion has
reversed direction. The rate corresponding to B will now remain
constant until again swltch-on occurs. B, which is now~ considered
the initial rate, gives a final rate, C, at switch-off. C is pos~-
itive, indicating thalt the vehicle is still rotating in the same
direction, but with a reduced magnitude. After switch-on again
occurs, the final rate becomes that corresponding to point D at
switch=off. The vehicle has now reversed direction. This is re-
peated for point E. It is again noted that control torque ''on"
lines can be constructed in the phase-plane diagram. These lines
intersect the © axis at + OD, and have a slope of -m, where m is
determined from equation (27). If F(s) is expressed in the form of

Equation (3), or (A-1) of the Appendix, then m is given by:

O (34)

The slope of the switch-on linec is simply =

A, - B
1 1
For this special cose(step control torque) control torque "off’' curves
can readily be constructed in the phase-plane, since the trajectories
are parabolic. However, in the more fcneral case, where the control
torque is a function of time, the construction of these "off  curves

becomes rather tedious since the vehicle attitude must be determined

at control torque rcmoval. Numerical intesration may be necessary.

1k
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4. Transient Response

Some general remarks can be made concerning the transient behavior

of the system., If the ratc curve lies nerr, and.is parallel, or
nearly parallel, to the minus-one line, then convergence is relatively
slow. Rapidity of convergence increases as the rate curve nears the

00 axis. Examples appear in Figure 10.

Convergence to the limit cycle for rates in the vicinity of a stable
limit cycle depends upon the slope and shape of the rate curve at
the intersection with the minus-one line. If the slope of the rate
curve approaches + 1 (perpendicular to the minus-one line) at the
intersection, convergence becomes slow. Also, if the slope of the
curve approaches - 1 (parallel to the minus-one line), convergence
becomes slow. Convergence to the limit cycle improves as the slope
of the rate curve approaches zero at the point of intersection.
Example rate diagrams with corresponding example phase-plane tra-

Jectories appear in Figures 11, 12, and 13.

DESIGN APPLICABILITY

Several basic problems arise if a systems approach is taken in the design
of a satellite or spnce vehicle. One is a "proper" choice of the various
actuating and sensing combinations which will satisfy the performance re-
quirements of the mission. In pgeneral this choice will not be unique. In
addition, the determination of "desired" characteristics of the various
control system elements, and of "proper" signal processing confronts the
control engineer. The cholce of a desipn criterion, from vhich various

control system decipn confifurations can be evaluated, plagues the control

15
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engineer because of the difficulty of divorcing the general problem from
the details of the mission and the operational concept, and the difficulty
in establishing & set of system "values" or absolute standards which allow
system "optimizaticn”. Whether this set of values or standerds is the
"right" one is a rather philosophical problem in itself. Because of these
basic difficulties, control systems are not presently designed using such
a generalized "rational” synthesis approach. The control engineer is
forced to select tentative systems and conduct a performance analysis for
each system. A trade-off study is then conducted to compare the relative
merits of the tentative systems, and a final design is then chosen. This
final choice is in essence an intuitive one, in which the designer utilizes

his enginecering "Jjudgment' or '"feel".

The synthesis applicability of the rate diagram technique presented in
this peper is based upon this design approach. If, for specific control
system configurations, the effects of important parameter variations upon
system performance can be understood with the aid of such diagrams, the
control engineer can nt least develop a "feel', however crude it may be,
for the overall design problem. Experience and engineering judgment are

still necessary in the final system design.

EXAMPLE CONTROL SYSTEM

The effects upon system performance of an example control system are shown
in rate diagram form (Figures 1L, 16, 18, and 20) for four cases of para-

meter variation.

The nominal system parameters chosen are:

16
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1.0 deg/sec2 (step function assumed)

>
o
L}

'l'A = TR = 0.05 sec

hOD = 0.l deg

'cls+1

P(s) = 5
('rzul) ( 5’;2 + in +1)

Case 1. - Variation of lead Time Constant (rl)

The effect of filter lead time constant variation upon the rate diagrem
and limit cycle amplitude are shown in Figures 14 and 15. The filter

transfer function for this case is:

7.8 +1
F(a) = —}—-———-
0.1 T8 + 1
Case 2. - Variation of Time Delay (7 AS TR)

The effect of time delay variation upon the rate diagram and limit cycle
amplitude eve shown in Figures 16 and 17. The filter transfer function

for this case is:

F(s) = 28+1
58 + 1

Case 3. - Variation of Hysteresis (hOD)

The effect of hysteresis variation is shown in Figures 18 and 19. The

filter transfer function is:

17
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F(s) = 2&2+4
o8 + 1

Case 4. - Addition of Quadratic lag

The effect of adding a quadratic lag to the system is shown in Figures

20 and 21. The filter transfer function is:

F(B) = 108 + 1 > ‘_'
s 28

(S+1)(uTz+ m—+l)
n n

CONCLUSIONS

The cdetailed trvatment of the example control system shows the effectiveness
of this technique in designing space vehicle on-off control systems. As
filter parameters or control system characteristics are varied, the design
engineer "observes' the resulting changes in system behavior by noting the
corresponding changes in the rate diagram. This can give a generul "feel"
for system optimization in meeting the specificd performance requirements

of the mission. The limit cycle derivations can readily be applied in cases

where fuel consumption during limit cycling is of prime interest.

A general design approach is suggested by specifying the desired rate
diagram characteristics and desigring a tilter vhich will yield the de-
sired rate diagram, or at least a satisfactory approximation. This filter

synthesis would probably require computer techniques.

18
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Figure 1. System Block Diagram
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Figure 2. Fxample Thase-Plane Trajectory

Figure 3. @xample hasc-llane Trajectory
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Figure 4. Typlcal Torque Charactcristics
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Figure 5. Rate Diagrams Indicating a Stable and Unstable System
é( éf
' 8o 6o
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Figure 6. Rate Diagrams Indicating Limit Cycles

20
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Flgure 7. Typical Limit Cycle Phase-Plane Trajectory
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Figure 8. Exnaplc Rate Diagram
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Figure 9, Typical Phase Plane Trajectory for Lixample System of Figure 8.
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Figure 11. lixample Indicating Relatively Slow Convergence
In Vicinity of Stable Limit Cycle
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{
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(b) TYPICAL PHASE-PLANE TRAJECTORY

Figure 12. Example Indicating Relatively Slow Convergence
In Vicinity of Stable Limit Cycle

8¢

Figure 12. Example Rate Diagram Indicating Rapid Convergence
In Vicinity of Stable Limit Cycle
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Various Values of ILead Time Constant, T
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Figure 15. Limit Cycle Rate Amplitude, gIC’ vs. lead Time Constant, <t

2k

1



8¢ (DEG/SEC)

£482-0005 -RU=-000

N

-1.5 : \ \
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Figure 16. DIExample Control System Rate Diagrams For Various

Values of Time Delay, 7, (Whore Th = TR)

0.10
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(] 0.8 1.0
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Figure 17. Limit Cycle Rate Amplitude, OIC’ vs. Time Delay, T
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Figure 18. fxample Control System Rote Diagrams For
Various Values of Hysteresis, th
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Figure 19. TIimit Cycle Rate Amplitude, 9]‘.0’ va. Tlysteresis, hOD
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Figure 21. Limit Cycle Rate Amplitude, OLC: vs. Madratic Tag Frequency, @
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APPENDIX

Derivation of Equations for Rate Diagram Construction

Procedure

In coustructing a rate diagram an anaelytical exprersion relating the
vehicle angular rate at control torque removal to the rate at appli-
cation is first derived. This is accomplished by determining the "on-
time" of the control torque, whereby the change in vehicle angular rate
can be determined from a knowledge of the torque characteristics. A
plot of the rate at torque removal versus the rate at torque application

is the rate diagram.

Assumptions
The following derivations are based upon the assumptions that:

1. All trensients in the system have effectively decayed prior to
switch-on. In other words, the "off-time" of the control torque
is long compared to the system time constants.

2. The vehicle dynamics can be represented as a free rigid body in
vhich the acceleration is proportional to the applied torque.

3. The control system characteristics are identical for both positive

or negative vehicle rotations.

For simplification, the commanded vehicle attitude, Oc, is assumed to be

Zero.
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Derivation

Let the filter transfer function, F(s) be expressed ac the ratio of the

two polynomials:

m me=1
F(s) = N{s) i Ams + Am_ls e Als + 1 (A-l)
D(s) Be+B 8”14 ... +BB+1
n n-l 1

Since no torque is applied to the vehicle prior to switch-on, the vehicle

rotates at a constant rate, éo' The filter input, then, is simply a ramp.

The steady-state output of the filter, €5’ to the ramp input, Oo’ is:

m
i

o ©+ (A- B) 60] (A-2)

and

me

= -0 . (A-3)

56 (o}

It is seen that the filter o.tput leads the input by an amount 6°(A,- Bl)’

and hes the same slope.

Consider the case vhere switch-on occurs when ¢ = - @ Control torque

no

application occurs 1, scconds later, at which time:

A

.

€ = - (OD n Oo TA) (A-4)
¢ = -0 (a-5)
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Now let time begin at control torque application. The differential

equation describing the system response is:

p D(p) e(t) = - N(p) )\(t)

vhere
= 4
P = &
A- g
I
Tc = control torque
I = vehicle moment of inertia

The initial conditions for the filter output are:

€, = - (OD + Oo TA)

eo = - Oo

n
d ne =0 for n>1l
dt

Laplace transformation of equation (A-6) then gives:

(A-6)

(A-7)

(A-8)

(A-9)

D(s) [ 8% E(s) - s €, - éo] = - Z [N(p) A(t)] (A-10)

Solving for E(s);
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we) - 2% %o, L) A (A-11)

8 sa g° D(s)

Then:

- e(t)

O, + 0,7, + 0.t + g(t) (A-12)

A

vhere a(t) £ -1 M l (A-13)
g% D(s) j

Ir ) (t) Is a step function of magnitude )\, then:

-l F(s
t) = - -
o) - - N, L7 | He (A-1)
Now switch-off will occur vhen e(t) - - OD(l-h). Substitutia;: this into

equation (A-12) gives:

gt) = - (e +86 1,1 0t) (A-15)

The control torque 'on-time" is equal to the time, to’ vhich satisfies

equation (A-15) for the given value of 60, plus the time delay, T The

R.
switch "on-time" is t_ + T,.
o A

The vehicle rate at torque removal, 0

£ is pgiven by:

t +1
(o}

R
6f - 60 4 [A(t) at (A-16)
[o]
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For A (t) a step functlion of magnitude Ao:
0, =8, - A (b, + 1) (A-17)

For a given value of éo’ to can be determined from equati~n (A-15) directly,
if the expression for g(t)\is simply enough, by iterative methods other-
wise, or graphically by plotting g(t) versus time and constr cting the line
represented by the right hand cide of equation (A-15) - the solution being
the intersection of the two plots. An lndirect, but more convenient method,
heowever, is to treat to as the variable. For a given value of to, 60 is
evalynted using equation (A-15). For this vzlue of t and the correspond-

ing value of éo’ éf is determined from equation (A-106). éf can then be

lotted versus éo’ yielding the rate diagram.

)

e



